On Finding Planted Cliques in Random Graphs

GraphEx 2014

Lev Reyzin

UIC

joint with Feldman, Grigorescu, Vempala, & Xiao in STOC ’13
Erdős-Rényi Random Graphs

$G(n,p)$ generates graph $G$ on $n$ vertices by including each possible edge independently with probability $p$. 

(4, 0.5) $\rightarrow$ $G(n,p)$ $\rightarrow$ $G$
Erdős-Rényi Random Graphs

$G(n,p)$ generates graph $G$ on $n$ vertices by including each possible edge independently with probability $p$. 
Erdős-Rényi Random Graphs

\( G(n,p) \) generates graph \( G \) on \( n \) vertices by including each possible edge independently with probability \( p \).

\( (4, 0.5) \) \( \rightarrow \) \( G(n,p) \) \( \rightarrow \) \( G \)
Typical Examples

\[ n = 100, \ p = 0.01 \]

\[ n = 100, \ p = 0.1 \]

\[ n = 100, \ p = 0.5 \]

Created using software by Christopher Manning, available on http://bl.ocks.org/christophermanning/4187201
Erdős-Rényi Random Graphs

E-R random graphs are an interesting “object” of study in combinatorics.

– When does G have a giant component?

– When is G connected?

– How large is the largest clique in G?
Erdős-Rényi Random Graphs

E-R random graphs are an interesting “object” of study in combinatorics.

– When does $G$ have a giant component?
  
  \[
  \text{when } np \to c > 1
  \]

– When is $G$ connected?

  \[
  \text{sharp connectivity threshold at } p = \ln n / n
  \]

– How large is the largest clique in $G$?

  \[
  \text{for } p = \frac{1}{2}, \text{ largest clique has size } k(n) \approx 2 \lg_2(n)
  \]
w.h.p. for $G \sim \mathcal{G}(n, \frac{1}{2})$, $k(n) \approx 2\lg_2(n)$

why?

• let $X_k$ be the number of cliques in $G \sim \mathcal{G}(n, .5)$

• $E[X_k] = \binom{n}{k} 2^{-\binom{k}{2}} < 1$ for $k > \approx 2\lg_2 n$

• in fact, (for large $n$) the largest clique is almost certainly $k(n) = 2\lg_2(n)$ or $2\lg_2(n)+1$ [Matula ’76]
Where is the largest clique?
Finding Large Cliques

for **worst-case** graphs:

finding largest clique is NP-Hard.

W[1]-Hard

hard to approximate to $n^{1-\varepsilon}$ for any $\varepsilon > 0$

**hope**: in E-R random graphs, finding large cliques is easier.
Finding Large Cliques in $G \sim G(n, \frac{1}{2})$

• Simply finding a clique of size $= \lg_2(n)$ is “easy”

  initialize $T = \emptyset$, $S = V$
  while ($S \neq \emptyset$) {
    pick random $v \in S$ and add $v$ to $T$
    remove $v$ and its non-neighbors from $S$
  }
  return $T$

Conjecture [Karp ’76]: no efficient method to find cliques of size $(1+\varepsilon)\lg_2 n$ in $E$-R random graphs.
Finding Large Cliques in $G \sim G(n, \frac{1}{2})$

- Simply finding a clique of size $= \lg_2(n)$ is “easy”

  initialize $T = \emptyset$, $S = V$
  while ($S \neq \emptyset$) {
    pick random $v \in S$ and add $v$ to $T$
    remove $v$ and its non-neighbors from $S$
  }
  return $T$

- A still-open Conjecture [Karp ’76]: for any $\varepsilon > 0$, there’s no efficient method to find cliques of size $(1+\varepsilon)\lg_2 n$ in E-R random graphs.
In E-R random graphs

- clique of size $2\lg_2 n$ exists
- can efficiently find clique of size $\lg_2 n$
- likely cannot efficiently find cliques size $(1+\varepsilon)\lg_2 n$

What to do?

- make the problem easier by “planting” a large clique to be found! [Jerrum ’92]
Planted Clique

the process: $G \sim \mathcal{G}(n,p,k)$

1. generate $G \sim \mathcal{G}(n,p)$
2. add clique to random subset of $k < n$ vertices of $G$

Goal: given $G \sim \mathcal{G}(n,p,k)$, find the $k$ vertices where the clique was “planted” (algorithm knows values: $n,p,k$)
Planted Clique

the process: $G \sim G(n,p,k)$
1. generate $G \sim G(n,p)$
2. add clique to random subset of $k < n$ vertices of $G$

Goal: given $G \sim G(n,p,k)$, find the $k$ vertices where the clique was “planted” (algorithm knows values: $n,p,k$)

Obvious relationship to community detection and other applications.
Progress on Planted Clique

For $G \sim G(n,\frac{1}{2},k)$, clearly no hope for $k \leq 2\lg_2 n + 1$.

For $k > 2\lg_2 n + 1$, there is an “obvious” $n^{O(\lg n)}$-algorithm:

input: $G$ from $(n,1/2,k)$ with $k > 2\lg_2 n + 2$
1) Check all $S \subseteq V$ of size $|S| = 2\lg_2 n + 2$ for $S$ that induces a clique in $G$.
2) For each $v \in V$, if $(v,w)$ is edge for all $w$ in $S$: $S = S \cup \{v\}$
3) return $S$

Unfortunately, this is not polynomial time.
Progress on Planted Clique

For $G \sim G(n, \frac{1}{2}, k)$, clearly no hope for $k \leq 2 \log_2 n + 1$.

For $k > 2 \log_2 n + 1$, there is an “obvious” $n^{O(\log n)}$-algorithm:

1) Check all $S \subseteq V$ of size $|S| = 2 \log_2 n + 2$ for $S$ that induces a clique in $G$.
2) For each $v \in V$, if $(v, w)$ is edge for all $w$ in $S$: $S = S \cup \{v\}$
3) return $S$

What is the smallest value of $k$ that we have a polynomial time algorithm for? Any guesses?
State-of-the-Art for Polynomial Time

- $k \geq c (n \lg n)^{1/2}$ is trivial. The degrees of the vertices in the plant “stand out.” (proof via Hoeffding & union bound)

- $k = c n^{1/2}$ is best so far. [Alon-Krivelevich-Sudokov ’98]
State-of-the-Art for Polynomial Time

- $k \geq c (n \lg n)^{1/2}$ is trivial. The degrees of the vertices in the plant “stand out.” (proof via Hoeffding & union bound)

- $k = c \sqrt{n}$ is best so far. [Alon-Krivelevich-Sudakov ’98]

input: G from $(n,1/2,k)$ with $k \geq 10 \sqrt{n}$

1) find 2\textsuperscript{nd} eigenvector $v_2$ of $A(G)$

2) Sort $V$ by decreasing order of absolute values of coordinates of $v_2$. Let $W$ be the top $k$ vertices in this order.

3) Return $Q$, the set of vertices with $\geq \frac{3}{4}k$ neighbors in $W$
State-of-the-Art for Polynomial Time

- $k \geq c \left(n \lg n\right)^{1/2}$ is trivial. The degrees of the vertices in the plant “stand out.” (proof via Hoeffding & union bound)

- $k = c n^{1/2}$ is best so far. [Alon-Krivelevich-Sudokov ’98]

In fact, (bipartite) planted clique was recently used as an alternate cryptographic primitive for $k < n^{1/2-\epsilon}$. [Applebaum-Barak-Wigderson ’09]
State-of-the-Art for Polynomial Time

- $k \geq c (n \lg n)^{1/2}$ is trivial. The degrees of the vertices in the plant “stand out.” (proof via Hoeffding & union bound)

- $k = c n^{1/2}$ is best so far. [Alon-Krivelevich-Sudokov ’98]

my goal: explain why there has been no progress on this problem past $n^{1/2}$. [FGVRX’13]
Statistical Query Learning

[Kearns ’93]

\[(x_1, y_1)\]
\[(x_2, y_2)\]
\[(x_3, y_3)\]
\[(x_m, y_m)\]
Statistical Query Learning

[Kearns ’93]

\[ q(x, f(x)), S = \text{poly} \]

where \( x \in X \)

\[ q: X \times \{0,1\} \rightarrow \{0,1\} \]
Statistical Query Learning

[ Kearns '93 ]

\[ (x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_m, y_m) \]

\( D \)

Chooses \( S \) examples from \( D \)

\[ q(x, f(x)), S = \text{poly} \]

where \( x \in X \)

\[ q : X \times \{0, 1\} \rightarrow \{0, 1\} \]

\[ \approx \text{avg } q(x, f(x)) \]

over \( S \) examples
Statistical Query Learning

[Kearns ’93]

\[
\begin{align*}
(x_1, y_1) \\
(x_2, y_2) \\
(x_3, y_3) \\
(x_m, y_m)
\end{align*}
\]
Statistical Query Learning
[Kearns ’93]

\[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_m, y_m)\]
Statistical Queries

• **Theorem** [Kearns ’93]: If a family of functions is learnable with statistical queries, then it is learnable (in the normal “PAC” sense) with noise!

• **Theorem** [Kearns ’93]: parity functions are not learnable with statistical queries.

  **proof idea**: b/c the parity functions are orthogonal under U, queries are either uninformative or “eliminate” one wrong parity function at a time (and there are $2^n$)
Statistical Queries

• **Theorem [Kearns ’93]:** If a family of functions is learnable with statistical queries, then it is learnable (in the normal “PAC” sense) with noise!

• **Theorem [Kearns ’93]:** parity functions are not learnable with statistical queries.

• **Theorem [Blum et al ’94],** when a family of functions has exponentially high “SQ dim” it is not learnable with statistical queries.
  
  – **SQ dim** is roughly the number of nearly-orthogonal functions (wrt a reference distribution). Parity functions have SQ dimension $= 2^n$.  


Statistical Queries

• **Theorem** [Kearns ’93]: If a family of functions is learnable with statistical queries, then it is learnable (in the normal “PAC” sense) with noise!

• **Theorem** [Kearns ’93]: parity functions are not learnable with statistical queries.

• **Theorem** [Blum et al ’94], when a family of functions has exponentially high “SQ dim” it is not learnable with statistical queries.

• **Shockingly**, almost all learning algorithms can be implemented w/ statistical queries! So high SQ dim is a serious barrier to learning, especially under noise.
Summary

Statistical queries and statistical dimension from learning theory are an explanation as to why certain classes are hard to learn.
(almost all our learning algorithms are statistical)

Idea: extend this framework to optimization problems and use it to explain the hardness of planted clique!
Traditional Algorithms

input data

output
Traditional Algorithms

input data → processing ... please wait → output
Traditional Algorithms

input data

output
Statistical Algorithms

input data

output
Statistical Algorithms

Input data

\[ q: \bullet \rightarrow \{0,1\}, \]

sample size S

Output
Statistical Algorithms

input data

q: • → {0, 1}, sample size S

output
Statistical Algorithms

input data

\[ q: \bullet \rightarrow \{0, 1\}, \text{ sample size } S \]

\[ \approx \text{avg } q(\bullet) \]

output
Statistical Algorithms

input data

…

processing...
please wait

poly

output
Statistical Algorithms

input data

poly

output
Statistical Algorithms

 Turns out most (all?) current optimization algorithms have statistical analogues!
Bipartite Planted Clique

\[ A(G) \]
Bipartite Planted Clique

Each row

w.p. \( \frac{(n-k)}{n} \) is random

is random,

w.p. \( \frac{k}{n} \) except in “plant” coordinates

\[ A(G) \]
# Bipartite Planted Clique

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[ A(G) \]
Statistical Algorithms for BPC

\[
A(G) = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 1
\end{pmatrix}
\]
Statistical Algorithms for BPC

\[ A(G) \]

Each row is random, w.p. \( (n-k)/n \), except in “plant” coordinates, w.p. \( k/n \) is random.
Statistical Algorithms for BPC

q: \{0,1\}^n \rightarrow \{0,1\}, S

\begin{align*}
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1
\end{align*}

each row

w.p. \frac{(n-k)}{n} is random

w.p. \frac{k}{n} except in “plant” coordinates

A(G)
Statistical Algorithms for BPC

q: \{0,1\}^n \rightarrow \{0,1\}, S

≈ avg value of q on S samples

\begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
\end{pmatrix}

A(G)

each row

w.p. \frac{(n-k)}{n} \text{ is random}

w.p. \frac{k}{n} \text{ except in “plant” coordinates}

\approx \text{avg value of } q \text{ on } S \text{ samples}
Statistical Algorithms for BPC

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Each row with probability \((n-k)/n\) is random, except in “plant” coordinates with probability \(k/n\). The table represents a matrix \(A(G)\).
Results

- Extension of statistical query model to optimization.
- Proving tighter, more general, lower bounds, which apply to learning also.

Gives a new tool for showing problems are difficult.
Results

• **Main result (almost):** for any $\varepsilon>0$, no poly time statistical alg. making queries with sample sizes $o(n^2/k^2)$, can find planted cliques of size $n^{1/2-\varepsilon}$.

  – *intuition:* $\exists$ many planted clique distributions with small “overlap” (nearly orthogonal in some sense), which are hard to tell from normal E-R graphs.

  – Implies that many ideas will fail to work, including Markov chain approaches [Frieze-Kannan ’03] for our version of the problem.
Results

• **Main result (almost):** for any $\epsilon > 0$, no poly time statistical alg. making queries with sample sizes $o(n^2/k^2)$, can find planted cliques of size $n^{1/2-\epsilon}$.
  
  – *intuition:* $\exists$ many planted clique distributions with small “overlap” (nearly orthogonal in some sense), which are hard to tell from normal E-R graphs.
  
  – Implies that many ideas will fail to work, including Markov chain approaches [Frieze-Kannan ’03] for our version of the problem.

• Since this work, an **integrality gap of $\approx n^{1/2}$** was shown for planted clique, giving further evidence for its hardness. [Meka-Wigderson ’13]
Any Questions?