Representing a Twitter Conversation

Goals

- **Analysis**: study the relationship between structure and toxicity of conversations, after the conversations are over
- **Prediction**: predict future toxicity based on the structure of the conversation, as the conversation unfolds

Data

- **News**: 510K+ conversations, 32M+ tweets, 5 outlets, 1 year
- **Midterms**: 676K+ conversations, 25M+ tweets, 1,430 candidates, 5 months

Analyses

Individual-level Analysis

- Toxicity is spread across many low to moderately toxic users

Dyad-level Analysis

- Toxic replies are more likely to come from other users who: (i) do not have any social relationship with the poster, (ii) have fewer followers, and (iii) do not have many common friends

Future Toxicity Predictions

- **Task**: Given the conversation so far, predict whether the conversation will become more toxic than expected
- Using stratification to control for prefix toxicity

Next Reply Toxicity Predictions

- **Task**: User i is about to join the conversation, will they post a toxic reply?
- Paired prediction task to control for the root content

Prediction

- ACC: 0.712
- AUC: 0.797
- F1: 0.712

Follow Graph Structure

- Toxic conversations tend to have follow graphs that are denser, have more CCs, and higher modularity

Follow Graph

Analysis

- Mean fraction of toxic tweets: $p(\text{reply} = \text{toxic} | \text{post})$

- **Acc**: 0.510
- **AUC**: 0.517
- **F1**: 0.510

News

- ACC: 0.712
- AUC: 0.753
- F1: 0.712